On the Design of Artificial Auto-associative Networks

نویسنده

  • Stefan Reimann
چکیده

In this paper, we consider the problem of how to construct an articifial neuronal network such that it reproduces a given set of patterns in an exact manner. Thereby, it turns out that the structure of the weight matrix of the network represents the structure of the set of patterns it is acting on, not the patterns themselves. Moreover, conditions are discussed under which the associative network memorizes a certain subset of these patterns. Thereby, our formal approach is based on the simple observation that neural networks are structured sets of neurons. Hence, by regarding recurrent neural networks as dynamical systems with symmetry, the category of G-sets and G-morphisms appears as a natural framework for evaluating their structure and functioning analytically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...

متن کامل

The Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks

Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...

متن کامل

A Study on Associative Neural Memories

Memory plays a major role in Artificial Neural Networks. Without memory, Neural Network can not be learned itself. One of the primary concepts of memory in neural networks is Associative neural memories. A survey has been made on associative neural memories such as Simple associative memories (SAM), Dynamic associative memories (DAM), Bidirectional Associative memories (BAM), Hopfield memories,...

متن کامل

The Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks

Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...

متن کامل

Auto-Associative Neural Networks and Eigenbands Fusion for Frontal Face Verification

Face classification is an important area of research with many applications, including biometric security and searching face databases. This article describes an approach to verify faces using Auto-associative Neural Networks and Eigenbands fusion. In Eigenbands strategy each faces is divided in horizontal bands from which are extracted features using PCA. This method aims capture discriminativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997